Extensions 1→N→G→Q→1 with N=C76 and Q=C22

Direct product G=NxQ with N=C76 and Q=C22
dρLabelID
C22xC76304C2^2xC76304,37

Semidirect products G=N:Q with N=C76 and Q=C22
extensionφ:Q→Aut NdρLabelID
C76:C22 = D4xD19φ: C22/C1C22 ⊆ Aut C76764+C76:C2^2304,31
C76:2C22 = C2xD76φ: C22/C2C2 ⊆ Aut C76152C76:2C2^2304,29
C76:3C22 = C2xC4xD19φ: C22/C2C2 ⊆ Aut C76152C76:3C2^2304,28
C76:4C22 = D4xC38φ: C22/C2C2 ⊆ Aut C76152C76:4C2^2304,38

Non-split extensions G=N.Q with N=C76 and Q=C22
extensionφ:Q→Aut NdρLabelID
C76.1C22 = D4:D19φ: C22/C1C22 ⊆ Aut C761524+C76.1C2^2304,14
C76.2C22 = D4.D19φ: C22/C1C22 ⊆ Aut C761524-C76.2C2^2304,15
C76.3C22 = Q8:D19φ: C22/C1C22 ⊆ Aut C761524+C76.3C2^2304,16
C76.4C22 = C19:Q16φ: C22/C1C22 ⊆ Aut C763044-C76.4C2^2304,17
C76.5C22 = D4:2D19φ: C22/C1C22 ⊆ Aut C761524-C76.5C2^2304,32
C76.6C22 = Q8xD19φ: C22/C1C22 ⊆ Aut C761524-C76.6C2^2304,33
C76.7C22 = D76:C2φ: C22/C1C22 ⊆ Aut C761524+C76.7C2^2304,34
C76.8C22 = C152:C2φ: C22/C2C2 ⊆ Aut C761522C76.8C2^2304,5
C76.9C22 = D152φ: C22/C2C2 ⊆ Aut C761522+C76.9C2^2304,6
C76.10C22 = Dic76φ: C22/C2C2 ⊆ Aut C763042-C76.10C2^2304,7
C76.11C22 = C2xDic38φ: C22/C2C2 ⊆ Aut C76304C76.11C2^2304,27
C76.12C22 = C8xD19φ: C22/C2C2 ⊆ Aut C761522C76.12C2^2304,3
C76.13C22 = C8:D19φ: C22/C2C2 ⊆ Aut C761522C76.13C2^2304,4
C76.14C22 = C2xC19:C8φ: C22/C2C2 ⊆ Aut C76304C76.14C2^2304,8
C76.15C22 = C76.C4φ: C22/C2C2 ⊆ Aut C761522C76.15C2^2304,9
C76.16C22 = D76:5C2φ: C22/C2C2 ⊆ Aut C761522C76.16C2^2304,30
C76.17C22 = D8xC19φ: C22/C2C2 ⊆ Aut C761522C76.17C2^2304,24
C76.18C22 = SD16xC19φ: C22/C2C2 ⊆ Aut C761522C76.18C2^2304,25
C76.19C22 = Q16xC19φ: C22/C2C2 ⊆ Aut C763042C76.19C2^2304,26
C76.20C22 = Q8xC38φ: C22/C2C2 ⊆ Aut C76304C76.20C2^2304,39
C76.21C22 = C4oD4xC19φ: C22/C2C2 ⊆ Aut C761522C76.21C2^2304,40
C76.22C22 = M4(2)xC19central extension (φ=1)1522C76.22C2^2304,23

׿
x
:
Z
F
o
wr
Q
<